Realization of Regular Maps of Large Genus

نویسندگان

  • Faniry H. Razafindrazaka
  • Konrad Polthier
چکیده

Regular map is an algebraic concept to describe most symmetric tilings of closed surfaces of arbitrary genus. All regular maps resp. symmetric tilings of surfaces up to genus 302 are algebraically known in the form of symmetry groups acting on their universal covering spaces. But still little is known about geometric realizations, i.e. finding most symmetric embeddings of closed surfaces and a supported most symmetric tiling. In this report, we will construct some new highly symmetric embeddings of regular maps of up to genus 61 and thereby shed some new light on this fundamental problem at the interface of algebra, differential geometry, and topology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Surfaces and Regular Maps

A regular surface is a closed genus g surface defined as the tubular neighbourhood of the edge graph of a regular map. A regular map is a family of disc type polygons glued together to form a 2-manifold which is flag transitive. The visualization of this highly symmetric surface is an intriguing and challenging problem. Unlike regular maps, regular surfaces can always be visualized as 3D embedd...

متن کامل

Regular map smoothing

A regular map is a family of equivalent polygons, glued together to form a closed surface without boundaries which is vertex, edge and face transitive. The commonly known regular maps are derived from the Platonic solids and some tessellations of the torus. There are also regular maps of genus greater than 1 which are traditionally viewed as finitely generated groups. RMS (Regular Map Smoothing...

متن کامل

Convex-Faced Combinatorially Regular Polyhedra of Small Genus

Combinatorially regular polyhedra are polyhedral realizations (embeddings) in Euclidean 3-space E of regular maps on (orientable) closed compact surfaces. They are close analogues of the Platonic solids. A surface of genus g > 2 admits only finitely many regular maps, and generally only a small number of them can be realized as polyhedra with convex faces. When the genus g is small, meaning tha...

متن کامل

Determination of all Regular Maps of Small Genus

Complete lists are given of all reflexible orientable regular maps of genus 2 to 15, all non-orientable regular maps of genus 4 to 30, and all (orientable) rotary but chiral (irreflexible) maps of genus 2 to 15 inclusive. On each list the maps are classified according to genus and type (viz [ p, q] where every face is incident with p edges and every vertex is incident with q edges). The complet...

متن کامل

Regular maps and hypermaps of Euler characteristic -1 to -200

This paper describes the determination of all orientably-regular maps and hypermaps of genus 2 to 101, and all non-orientable regular maps and hypermaps of genus 3 to 202. It extends the lists obtained by Conder and Dobcsányi (2001) of all such maps of Euler characteristic −1 to −28, and corrects errors made in those lists for the vertexor face-multiplicities of 14 ‘cantankerous’ non-orientable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015